PIANTE CONTENENTI ACIDO ACETILSALICILICO PERICOLOSE IN PAZIENTI AFFETTI DA COVID-19! MA DI COSA STIAMO PARLANDO?
Una delle problematiche legata al Covid-19 (SARS-CoV 2) è la risposta infiammatoria agressiva (Tempesta Citochinica o Ipercitochinemia) che l’organismo mette in atto per contrastare il virus e in tutto il mondo si sta cercando di ridurre per l’appunto tale risposta perchè porta a tutta una serie di complicanze tra le quali la dispinea che porta poi il paziente a finire in terapia intensiva.
Ora Come tutti noi sapiamo molti dei farmaci che si stanno utilizzando contro Covid-19 in realta non sono diretti contro il virus bensi proprio a fermare questa risposta agressiva del sistema immunitario (ipercitochinemia)!
Proprio oggi l’Agenzia per la sicurezza alimentare francese, l’Anses ha messo sotto accusa le piante contenenti Acido Acetilsalicilico perchè a detta degli “esperti francesi” sarebbero pericolose perchè inattiverebbero parte delle difese immunitarie.
Ma come agisce L’Acido acetilsalicilico sul sistema immunitario?
L'acido acetilsalicilico è un antinfiammatorio non steroideo; a dosi elevate 1 g, svolge azione antinfiammatorio derivante dall'inibizione della cicloossigenasi (CXO-1 e CXO-2) e delle vie di segnalazione proinfiammatoria, incluso NF-κB,
Quindi blocca proprio uno dei fattori della tempesta citochinica che tanto andiamo cercando di bloccare!
Quindi di cosa stiamo parlando cari signori Francesi?
Paolo Pelini
Erbochimico
Roma
paolo.pelini@gmail.com
http://www.paolopelinierbochimico.it
REFERENZE:
- ↵Vane, J. R.. 1987. Antiinflammatory drugs and the many mediators of inflammation. Int. J. Tissue React. 9: 1-14.PubMedGoogle Scholar
- ↵Vane, J. R.. 1971. Inhibition of prostaglandin synthesis as a mechanism of action for aspirin-like drugs. Nat. New Biol. 231: 232-235.CrossRefPubMedGoogle Scholar
- ↵Flower, R., R. Gryglewski, K. Herbaczynska-Cedro, J. R. Vane. 1972. Effects of anti-inflammatory drugs on prostaglandin biosynthesis. Nat. New Biol. 238: 104-106.PubMedGoogle Scholar
- ↵Flower, R. J.. 1974. Drugs which inhibit prostaglandin biosynthesis. Pharmaco.l Rev. 26: 33-67.Abstract/FREE Full TextGoogle Scholar
- ↵Reilly, I. A., G. A. FitzGerald. 1987. Inhibition of thromboxane formation in vivo and ex vivo: implications for therapy with platelet inhibitory drugs. Blood 69: 180-186.Abstract/FREE Full TextGoogle Scholar
- ↵Hennekens, C. H., O. Sechenova, D. Hollar, V. L. Serebruany. 2006. Dose of aspirin in the treatment and prevention of cardiovascular disease: current and future directions. J. Cardiovasc. Pharmacol. Ther. 11: 170-176.Abstract/FREE Full TextGoogle Scholar
- ↵Antithrombotic Trialists’ Collaboration 2002. Collaborative meta-analysis of randomised trials of antiplatelet therapy for prevention of death, myocardial infarction, and stroke in high risk patients. BMJ 324: 71-86.Abstract/FREE Full TextGoogle Scholar
- ↵Patrono, C., G. Ciabattoni, E. Pinca, F. Pugliese, G. Castrucci, A. De Salvo, M. A. Satta, B. A. Peskar. 1980. Low dose aspirin and inhibition of thromboxane B2 production in healthy subjects. Thromb. Res. 17: 317-327.CrossRefPubMedGoogle Scholar
- ↵Cooper, D., J. Russell, K. D. Chitman, M. C. Williams, R. E. Wolf, D. N. Granger. 2004. Leukocyte dependence of platelet adhesion in postcapillary venules. Am. J. Physiol. 286: H1895-H1900.Google Scholar
- ↵Weissmuller, T., E. L. Campbell, P. Rosenberger, M. Scully, P. L. Beck, G. T. Furuta, S. P. Colgan. 2008. PMNs facilitate translocation of platelets across human and mouse epithelium and together alter fluid homeostasis via epithelial cell-expressed ecto-NTPDases. J. Clin. Invest. 118: 3682-3692.CrossRefPubMedGoogle Scholar
- ↵Claria, J., C. N. Serhan. 1995. Aspirin triggers previously undescribed bioactive eicosanoids by human endothelial cell-leukocyte interactions. Proc. Natl. Acad. Sci. USA 92: 9475-9479.Abstract/FREE Full TextGoogle Scholar
- ↵Kopp, E., S. Ghosh. 1994. Inhibition of NF-κB by sodium salicylate and aspirin. Science 265: 956-959.Abstract/FREE Full TextGoogle Scholar
- ↵Grilli, M., M. Pizzi, M. Memo, P. Spano. 1996. Neuroprotection by aspirin and sodium salicylate through blockade of NF-κB activation. Science 274: 1383-1385.Abstract/FREE Full TextGoogle Scholar
- ↵Harbord, M. W., D. J. Marks, A. Forbes, S. L. Bloom, R. M. Day, A. W. Segal. 2006. Impaired neutrophil chemotaxis in Crohn’s disease relates to reduced production of chemokines and can be augmented by granulocyte-colony stimulating factor. Aliment Pharmacol. Ther. 24: 651-660.CrossRefPubMedGoogle Scholar
- ↵Day, R. M., M. Harbord, A. Forbes, A. W. Segal. 2001. Cantharidin blisters: a technique for investigating leukocyte trafficking and cytokine production at sites of inflammation in humans. J. Immunol. Methods 257: 213-220.CrossRefPubMedGoogle Scholar
- ↵Philippidis, P., J. C. Mason, B. J. Evans, I. Nadra, K. M. Taylor, D. O. Haskard, R. C. Landis. 2004. Hemoglobin scavenger receptor CD163 mediates interleukin-10 release and heme oxygenase-1 synthesis: antiinflammatory monocyte-macrophage responses in vitro, in resolving skin blisters in vivo, and after cardiopulmonary bypass surgery. Circ. Res. 94: 119-126.Abstract/FREE Full TextGoogle Scholar
- ↵Pierard-Franchimont, C., G. E. Pierard. 1988. Cantharidin-induced acantholysis. Am. J. Dermatopathol. 10: 419-423.PubMedGoogle Scholar
- ↵Perretti, M., N. Chiang, M. La, I. M. Fierro, S. Marullo, S. J. Getting, E. Solito, C. N. Serhan. 2002. Endogenous lipid- and peptide-derived anti-inflammatory pathways generated with glucocorticoid and aspirin treatment activate the lipoxin A4 receptor. Nat. Med. 8: 1296-1302.CrossRefPubMedGoogle Scholar
- ↵Williams, K. I., G. A. Higgs. 1988. Eicosanoids and inflammation. J. Pathol. 156: 101-110.CrossRefPubMedGoogle Scholar
- ↵Salter, J. W., C. F. Krieglstein, A. C. Issekutz, D. N. Granger. 2001. Platelets modulate ischemia/reperfusion-induced leukocyte recruitment in the mesenteric circulation. Am. J. Physiol. 281: G1432-G1439.Google Scholar
- ↵Chlopicki, S., M. Lomnicka, R. J. Gryglewski. 2003. Obligatory role of lipid mediators in platelet-neutrophil adhesion. Thromb. Res. 110: 287-292.CrossRefPubMedGoogle Scholar
- ↵Murata, T., F. Ushikubi, T. Matsuoka, M. Hirata, A. Yamasaki, Y. Sugimoto, A. Ichikawa, Y. Aze, T. Tanaka, N. Yoshida, et al 1997. Altered pain perception and inflammatory response in mice lacking prostacyclin receptor. Nature 388: 678-682.CrossRefPubMedGoogle Scholar
- ↵Claria, J., E. Titos, W. Jimenez, J. Ros, P. Gines, V. Arroyo, F. Rivera, J. Rodes. 1998. Altered biosynthesis of leukotrienes and lipoxins and host defense disorders in patients with cirrhosis and ascites. Gastroenterology 115: 147-156.CrossRefPubMedGoogle Scholar
- ↵Schaldach, C. M., J. Riby, L. F. Bjeldanes. 1999. Lipoxin A4: a new class of ligand for the Ah receptor. Biochemistry 38: 7594-7600.CrossRefPubMedGoogle Scholar
- ↵Machado, F. S., J. E. Johndrow, L. Esper, A. Dias, A. Bafica, C. N. Serhan, J. Aliberti. 2006. Anti-inflammatory actions of lipoxin A4 and aspirin-triggered lipoxin are SOCS-2 dependent. Nat. Med. 12: 330-334.CrossRefPubMedGoogle Scholar
- ↵Hachicha, M., M. Pouliot, N. A. Petasis, C. N. Serhan. 1999. Lipoxin (LX)A4 and aspirin-triggered 15-epi-LXA4 inhibit tumor necrosis factor 1α-initiated neutrophil responses and trafficking: regulators of a cytokine-chemokine axis. J. Exp. Med. 189: 1923-1930.Abstract/FREE Full TextGoogle Scholar
- ↵Paul-Clark, M. J., T. Van Cao, N. Moradi-Bidhendi, D. Cooper, D. W. Gilroy. 2004. 15-Epi-lipoxin A4-mediated induction of nitric oxide explains how aspirin inhibits acute inflammation. J. Exp. Med. 200: 69-78.Abstract/FREE Full TextGoogle Scholar
- ↵Gavins, F. N., S. Yona, A. M. Kamal, R. J. Flower, M. Perretti. 2003. Leukocyte antiadhesive actions of annexin 1: ALXR- and FPR-related anti-inflammatory mechanisms. Blood 101: 4140-4147.Abstract/FREE Full TextGoogle Scholar
- ↵Gilroy, D. W., A. Tomlinson, D. A. Willoughby. 1998. Differential effects of inhibitors of cyclooxygenase (cyclooxygenase 1 and cyclooxygenase 2) in acute inflammation. Eur. J. Pharmacol. 355: 211-217.CrossRefPubMedGoogle Scholar
- ↵Chiang, N., E. A. Bermudez, P. M. Ridker, S. Hurwitz, C. N. Serhan. 2004. Aspirin triggers antiinflammatory 15-epi-lipoxin A4 and inhibits thromboxane in a randomized human trial. Proc. Natl. Acad. Sci. USA 101: 15178-15183.Abstract/FREE Full TextGoogle Scholar
- ↵FitzGerald, G. A., J. A. Oates, J. Hawiger, R. L. Maas, L. J. Roberts, II, J. A. Lawson, A. R. Brash. 1983. Endogenous biosynthesis of prostacyclin and thromboxane and platelet function during chronic administration of aspirin in man. J. Clin. Invest. 71: 676-688.CrossRefPubMedGoogle Scholar
- ↵Wise, H.. 1996. The inhibitory effect of prostaglandin E2 on rat neutrophil aggregation. J. Leukocyte Biol. 60: 480-486.AbstractGoogle Scholar
- ↵Rajakariar, R., M. Hilliard, T. Lawrence, S. Trivedi, P. Colville-Nash, G. Bellingan, D. Fitzgerald, M. M. Yaqoob, D. W. Gilroy. 2007. Hematopoietic prostaglandin D2 synthase controls the onset and resolution of acute inflammation through PGD2 and 15-deoxyΔ12 14 PGJ2. Proc. Natl. Acad. Sci. USA 104: 20979-20984.Abstract/FREE Full TextGoogle Scholar
- ↵Serhan, C. N.. 2008. Controlling the resolution of acute inflammation: a new genus of dual anti-inflammatory and proresolving mediators. J. Periodontol. 79: 1520-1526.CrossRefPubMedGoogle Scholar
- ↵Libby, P.. 2002. Inflammation in atherosclerosis. Nature 420: 868-874.CrossRefPubMedGoogle Scholar
- ↵Smilde, T. J., S. van Wissen, H. Wollersheim, M. D. Trip, J. J. Kastelein, A. F. Stalenhoef. 2001. Effect of aggressive versus conventional lipid lowering on atherosclerosis progression in familial hypercholesterolaemia (ASAP): a prospective, randomised, double-blind trial. Lancet 357: 577-581.CrossRefPubMedGoogle Scholar
- ↵Taylor, A. J., S. M. Kent, P. J. Flaherty, L. C. Coyle, T. T. Markwood, M. N. Vernalis. 2002. ARBITER: Arterial biology for the investigation of the treatment effects of reducing cholesterol: a randomized trial comparing the effects of atorvastatin and pravastatin on carotid intima medial thickness. Circulation 106: 2055-2060.Abstract/FREE Full TextGoogle Scholar
- ↵Kubota, N., T. Kasai, K. Miyauchi, W. Njaman, K. Kajimoto, Y. Akimoto, T. Kojima, Y. Ken, K. Takeshi, D. Hiroyuki. 2008. Therapy with statins and aspirin enhances long-term outcome of percutaneous coronary intervention. Heart Vessels 23: 35-39.CrossRefPubMedGoogle Scholar
- ↵Hennekens, C. H., W. R. Schneider. 2008. The need for wider and appropriate utilization of aspirin and statins in the treatment and prevention of cardiovascular disease. Expert Rev. Cardiovasc. Ther. 6: 95-107.CrossRefPubMedGoogle Scholar
- ↵Birnbaum, Y., Y. Ye, Y. Lin, S. Y. Freeberg, S. P. Nishi, J. D. Martinez, M. H. Huang, B. F. Uretsky, J. R. Perez-Polo. 2006. Augmentation of myocardial production of 15-epi-lipoxin-a4 by pioglitazone and atorvastatin in the rat. Circulation 114: 929-935.Abstract/FREE Full TextGoogle Scholar
- ↵Laufs, U., V. La Fata, J. Plutzky, J. K. Liao. 1998. Upregulation of endothelial nitric oxide synthase by HMG CoA reductase inhibitors. Circulation 97: 1129-1135.Abstract/FREE Full TextGoogle Scholar
- ↵Hakamada-Taguchi, R., Y. Uehara, K. Kuribayashi, A. Numabe, K. Saito, H. Negoro, T. Fujita, T. Toyo-oka, T. Kato. 2003. Inhibition of hydroxymethylglutaryl-coenzyme a reductase reduces Th1 development and promotes Th2 development. Circ. Res. 93: 948-956.Abstract/FREE Full TextGoogle Scholar
- ↵Kwak, B., F. Mulhaupt, S. Myit, F. Mach. 2000. Statins as a newly recognized type of immunomodulator. Nat. Med. 6: 1399-1402.CrossRefPubMedGoogle Scholar
- ↵Cuzick, J., F. Otto, J. A. Baron, P. H. Brown, J. Burn, P. Greenwald, J. Jankowski, C. La Vecchia, F. Meyskens, H. J. Senn, M. Thun. 2009. Aspirin and non-steroidal anti-inflammatory drugs for cancer prevention: an international consensus statement. Lancet Oncol. 10: 501-507.CrossRefPubMedGoogle Scholar
- ↵Mantovani, A., P. Allavena, A. Sica, F. Balkwill. 2008. Cancer-related inflammation. Nature 454: 436-444.CrossRefPubMedGoogle Scholar